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initiate tracking of the target and simultaneously 

request local assets to launch weapons, allowing the 

remote assets to take the lead in tracking and 

intercepting the target. These two CE strategies 

maximize cooperation between various assets, thereby 

enhancing target interception performance. 

 

 
 

Fig. 1. Drone trajectories. 

 

The structure of the heuristic algorithm [3] 

performs assignments on an anti-aircraft gun to target 

basis. After determining the assignment of anti-aircraft 

guns and radars to each target using the heuristic 

algorithm, the expected value of interception for each 

target is calculated. The expected value of interception 

is calculated by multiplying the value of target 𝑗 with 

the earliest possible firing time. Based on the results of 

this calculation, targets to be eliminated are prioritized 

in a list, optimizing resource allocation. Anti-aircraft 

shell units are then allocated to targets in order of 

engagement value, allowing for efficient engagement. 

To set priorities, the allocation of armament is 

varied based on the number of anti-aircraft gun types, 

employing the armament allocation plan at the battery 

level. For instance, if more than two types of  

anti-aircraft guns can be assigned to a target, it enables 

follow-up responses even if the initial interception 

attempt fails, eliminating the need for excessive 

armament allocation in the initial response. 

Based on these rules, the optimal combination of 

anti-aircraft guns, targets, and radars is selected for the 

given situation. Finally, batteries and radars are 

assigned to targets, and the allocation process is 

repeated for a predetermined number of iterations until 

completion. 

 
 

3. Result 
 

The results of the interception simulation under the 

assumed problem environment are shown in Fig. 2. In 

the graph, the "O" marks indicate the state where the 

assets are tracking the drone, and the "X" marks 

represent points where interception was successfully 

achieved. In this simulation, a total of 30 drones were 

deployed, of which 26 were intercepted. Thus, the 

simulation shows an interception success rate of 

approximately 87 % for this defense system. 

 
 

Fig. 2. Engagement simulation result. 

 

 

4. Conclusion 
 

This study proposed resource management and 

scheduling strategies within a multi-layered defense 

system to effectively counter advanced UAV threats, 

such as suicide drones. By applying the CE concept, 

resource allocation among defense assets was 

optimized, and suicide drone interception scenarios 

were simulated to analyze defense efficiency. The 

study confirmed that effective cooperation between 

remote and local assets is achievable through the use 

of precision cue and forward pass approaches within 

the CE strategy. This demonstrated that each defense 

asset could perform intercepts efficiently, minimizing 

assets damage even within resource constraints. 

Additionally, incorporating precise calculations of 

interception points for each defense asset and 

continuous target tracking during interception is 

expected to further enhance the precision and 

responsiveness of the defense system. These future 

improvements will support the multi-layered defense 

system in responding more effectively to various  

threat scenarios. 
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Summary: This paper describes how UAVs can handle uncertainty in information collected from UAVs with heterogenous 

sensors. The approach reported here combines Bayesian Belief Network (BBN) with a Large Language Model (LLM). Our 

primary use case concerns the detection of forest fires but we also report laboratory experiments that are conducted using  

non-combustible objects. Objects’ colour, shape, are detected and interpreted using on-board sensors. Images from the UAV 

are also passed for interpretation to an LLM. None of the sources is perfectly applicable in all situations, as such, the UAV 

requires situation-based confirmation. Each of the sources is mapped to a node in BBN node with relations between nodes  

pre-defined through a Conditional Probability Distribution (CPD) created with input from Subject Matter Experts. We 

demonstrate the approach using DJI Ryze Tello programmable UAV and PyBBN scripts. The approach shows flexibility, 

adaptability, real-time analysis, and data saving (little data is required). 

 

Keywords: Uncertainty handling, UAV, LLM, Forest fire. 

 

 

1. Introduction 
 

Unmanned Aerial Vehicles (UAVs) or drones have 

been extensively applied in the detection of forest fires 

[1]. The drones are equipped with various sensors to 

detect, monitor, and report the presence and movement 

of fire. A key problem in using multiple sensors arises 

from detection uncertainty [3, 4]. For example, 

detecting forest fire using colour could be incorrect 

when there is a presence of fire-like objects (e.g., dried 

grass covered with dust). To address this, multiple 

sensors need to be coordinated to handle various 

sensors operating in varying situations. 

We have developed an approach to handling 

uncertainty in data from multiple sensors using a 

Bayesian Belief Network (BBN) [5, 6]. We have also 

developed an approach to path planning using a 

version of Delaunay triangulation [2] that simplifies 

on-broad processing and supports a semi-random 

search pattern (which we believe to be more efficient 

when searching for targets over a large area than the 

existing fixed pattern methods e.g., parallel track, 

creeping line, sector search, expanding square, etc. or 

random search e.g., Levy flight [1-9]). In this paper, 

we implement these solutions on a DJI Ryze Tello 

using PyBBN in an easy-to-implement, flexible (easy 

to update), real-time (non-post-hoc), and 

adaptable(situation-aware) fashion. 

 

 

1.1. Bayesian Belief Network (BBN) for Handling  

       Information Uncertainty 

 

In Fig. 1, information from onboard sensors is used 

to infer the presence of objects (balloon or fire) from 

features in an image taken by the UAV (in terms of 

colour and shape of the spreading fire). It is possible 

that these sensors could misinterpret the image, e.g., 

the colour analysis could ‘see’ an orange surface as 

fire, or the shape analysis could fail to spot the full 

extent of the fire. In our approach, we complement the 

sensor analysis using off-board image interpretation. 

This could be evoked when the recognition confidence 

is below a threshold and could use a human Subject 

Matter Expert or, in this instance, a Large Language 

Model, to interpret the image. We assume that there 

will be circumstances in which this off-board 

processing could fail, e.g., when a fire is obscured by 

tree cover. The sensors could be supplemented with 

sensors for temperature, smoke analysis, etc. The 

output of the analysis nodes is weighted by time of day 

and weather conditions, and this weighted information 

is combined to produce a Situation Awareness report 

(‘fire_final_SA’) as represented by the BBN in Fig. 2. 

 

 
 

Fig. 1. Example of BBN. 

 

The ‘fire_final_SA’ is derived using a Conditional 

Probability Distribution (CPD) of the decision parent 

nodes (Table 1) of the Bayesian Belief Network 

(BBN). Each distinct combination of the states of the 

parent nodes has a probability input in the decision 

node CPD. The inputs of the CPD can be seeded by a 

Subject Matter Expert (e.g., Table 1) or learned [6] or 
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a combination of both. In Table 1, each information 

source reports whether it believes that fire is present 

(P) or absent (A). Where there is disagreement 

between the sources, the CPD proposes a probability 

of fire presence. The CPD in Table 1 is an assumed 

SME input e.g., #1 indicates an agreement between all 

sensors that fire is present. On the other hand, #2 shows 

a situation when shape-based fire input disagrees with 

the colour-based sensor. A probability value of 0.1 for 

fire absence was allocated because the time of the day 

is night and the weather is foggy which could possibly 

affect shape visibility. Hence, the change in weather 

and time of the day could improve the uncertainty (e.g., 

having time of the day as “Day” and weather “Clear” 

could lead to a higher uncertainty depending on the 

LLM input). This clearly shows the input of the CPD 

can be learned based on previous encounters with the 

objects by the sensors. In previous work [10], the 

Expectation-Maximisation algorithm (EM) was used 

to demonstrate the learning process. The number of 

inputs of the CPD can be calculated using Equation (1) 

and hence Table 1 shows the summary of the input. 
 

 𝑁𝑖𝑛𝑝𝑢𝑡𝑠  =  (∏ 𝑆𝑖)𝑆𝛼
𝑛
𝑖 = 1 , (1) 

 

where 𝑁𝑖𝑛𝑝𝑢𝑡𝑠 is the number of the CPD inputs, 𝑆𝑖 is 

the number of states of the parent nodes, 𝑆𝛼 is the 

number of states of the deciding node (child node). 

 

 

 
 

Fig. 2. Example of the UAV BBN. 

 

 

Table 1. Example of CPD (Present = P, Absent = A)  

of the BBN Decision Node. 
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1.2. Delaunay-inspired Area Coverage Planning  

       Algorithm 
 

The Delaynay-inspired algorithm systematically 

selects seed waypoints (highly separated points within 

the searching space) and generates the remaining 

waypoints based on angle, direction, and distance 

differences. The seed waypoints are spread across the 

searching space (this can be systematic e.g., selecting 

from each angle). The seed waypoints serve as layer 1 

waypoints of the search. Having the seed waypoints, 

then number of waypoints to be visited in layer two are 

then generated based on Delaynay triangulation 

number of triangles theorem (i.e., by taking each 

waypoint as a centre of triangle). As such the higher 

the number of seeds waypoints the higher the number 

of places to be visited. The search continues by visiting 

each waypoint in a layer and generating the next layer 

waypoint. Each layer of waypoints has a common 

angle, edge distance, and direction values. The choice 

of angle (direction) is based on the four quadrants and 

is systematic to stay around the search space and being 

non-repetitive. The number of waypoints and edges in 

a layer is controlled by the Delaunay triangulation 

number of triangles theorem [2] i.e., a mapping of 

points with the number of triangles that will be 

produced. This makes it look like a pseudorandom (in 

terms of coverage) approach while it is predictable and 

controllable. 

 

 

2. Implementation 

 
A DJI Ryze Tello programmable drone was tasked 

to explore an area based on a predefined path using a 

Delaunay-inspired path planning algorithm [11]. The 

drone is connected to the computer using the drone’s 

WIFI. A Python script is written to generate a 

Delaunay-inspired path using distance and direction 

variation. The implementation of the Delaunay-

inspired path planning approach uses simple distance 

(x meters) and direction (based on angle) variation. 
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The task is to detect an object from analysis of images 

captured using the on-board camera. Images are 

analysed using the OpenCV library to analyse the 

colour and shape of an object, and also an LLM 

interpreter (through Hugging Face Transformers). The 

LLM function is designed to output a Boolean result 

based on target presence or absence. This information 

(colour, shape, LLM output) is fed to nodes in the BBN 

(Fig. 2), and implemented on the connected PC using 

PyBBN. Each of the functions will return true (when 

an item is present) or false (when an item is absent). 

The received value will then be judged based on the 

assigned CPD of the deciding node. 

For safety reasons, the experiment in the 

laboratory detected balloons (Fig. 1) in different 

colours. When an object was detected, the drone 

changed its behaviour from an area search to a local 

search, i.e., it changed from the Delaunay path to 

circling clockwise at a set height if the object is a 

specific colour, or circling at a lower height if it is 

another colour. The purpose of these circling paths was 

to create different actions for the drone depending on 

the object’s colour, shape, or LLM interpretation. The 

analogy with operational conditions would be the need 

under some conditions, to fly closer to the fire in order 

for specific sensors (e.g., temperature, smoke analysis) 

to be more effective. A later replacement with real fire 

images was conducted. 

 

 

3. Discussion 

 
The proposed method offers the following benefits: 

a. Real-time application i.e., non-post hoc: the 

interpretation is real-time on the connected 

hosting machine i.e., without the need for a 

vision-based training process (which is time 

and data-consuming) [12, 13]; 

b. Uncertainty: the proposed BBN-based model 

uses probabilities. This allows uncertainty 

modelling [10,14,15], e.g., #2 of Table 1 shows 

fire:absent = 90 %, fire:present = 10 %; 

c. Learning: the model can be trained to handle 

various forms of uncertainty as described  

in [10]; 

d. None situation training approach: the model 

does not require a training process using 

situation data e.g., different parent nodes to 

ascertain the group of nodes information; 

e. Multi-hierarchy: it allows multi-hierarchy 

solutions; 

f. UAV action control: based on the output of the 

deciding node, the UAV can select 

confirmation action. 

 

 

4. Conclusions 

 
We demonstrate how BBN can be applied to handle 

the issue of uncertainty in UAV sensors. The BBN 

shows a potential to control UAV actions. The 

approaches require no large datasets for training and 

real-time sensor data analysis using LLM and object 

characteristics features. In the future, the work will 

look at CPD training and dynamic BBN. 
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